

Variation of InsP_4 , InsP_5 and InsP_6 levels in tissues and biological fluids depending on dietary phytate

Felix Grases*, Bartolomé M. Simonet, Rafael M. Prieto, Juan G. March

Laboratory of Renal Lithiasis Research, University of Balearic Islands, Palma de Mallorca, Spain

Received 16 February; received in revised form 31 March 2001; accepted 20 June 2001

Abstract

Due to the increasing interest of InsP_6 on human health, the aim of this paper is to compare the levels of highly phosphorylated inositol (InsP₄, InsP₅ and InsP₆) in organs and biological fluids of rats and to study the influence of the presence and absence of InsP₆ in diets. Thus, for this purpose, the variation of InsP₄, InsP₅ and InsP₆ levels in organs and biological fluids of rats submitted to two different diets were studied. In the AIN-76A diet no InsP₆ was present, yet the other was a 1% InsP₆ modified diet (AIN-76A + 1% InsP₆). The highest InsP₄, InsP₅ and InsP₆ levels were found to be 10-fold superior in the brain than those found in the kidney. When the InsP₆ was eliminated from the diet, the InsP₆ levels decreased dramatically (97.2% in kidney, 89.8% in brain, 100% in bone, 90.5% in plasma and 98.1% in urine), the InsP₅ levels showed an important decrease (61.2% in kidney, 45.5% in brain, 28.1% in bone, 30% in plasma and 88.6% in urine) and the InsP₄ levels in organs only changed slightly. From these results, it can be deduced that the majority of InsP₆ present in the organism is of dietary origin and its endogenous synthesis is not important. According to the results, it can be evidenced that the endogenous synthesis of InsP₅ can occur, besides InsP₆ can be transformed by enzymatic dephosphorylation in InsP₅. © 2001 Elsevier Science Inc. All rights reserved.

Keywords: Inositol tetraphosphate; Inositol pentaphosphate; Inositol hexaphosphate; InsP₆

1. Introduction

Phytate (InsP₆) is an abundant component of plant seeds [1], which are known as a phosphate store [2], resulting the unique biological function attributed to InsP₆ for a long time. However, recent studies have demonstrated that InsP₆ is found in all animal cells [3,4] and in biological fluids [5]. The reasons for the occurrence of InsP₆ in animal cells and fluids are not totally understood. Nevertheless, interesting beneficial effects of InsP₆ on human health have been pointed out. In this aspect it is necessary to remark that InsP₆ is an important antioxidant [6], protects against cancer [7,8] and prevents pathological calcifications such as renal calculi [9,10] and tissue calcifications [11].

Although many of the diverse pathways of the inositol phosphate metabolism have been described and the InsP₆ synthesis in the vegetables cells is known [12–17], there is controversy about the InsP₆ synthesis in the animal cells,

and the pathways of InsP₆ *de novo* formation in such cases is not established [18]. So using cultures of different cell types treated by [³H]-inositol in the medium, it was found, that in such conditions radioactive InsP₆ was formed, yet radio-active inositol incorporation to InsP₆ pool was very slow. Thus it took more than a week to reach the equilibrium. Nevertheless the metabolic pathways for InsP₄ and InsP₅ synthesis *de novo* in animal cells has already been established [19–21]. In all cases Ins-(1,4,5)-P₃ was identified as a precursor. Though several InsP₄ and InsP₅ isomers have been found in animals tissues [3], the Ins-(1,3,4,5,6)-P₅ was the predominant isomer of InsP₅⁴ and Ins-(1,3,4,5)-P₄, Ins-(1,3,4,6)-P₄, Ins-(1,4,5,6)-P₄ and Ins-(3,4,5,6)-P₄ were the predominant isomers of InsP₄¹⁸.

The goal of this paper is to compare the levels of InsP₄, InsP₅ and InsP₆ in organs and biological fluids of rats and to study the effects of the presence or absence of the dietary InsP₆ on such levels, hence evaluating the possibility of the diet's InsP₆ acting as a source of InsP₄ and InsP₅ *in vivo*, since several phosphatase enzymes with a high affinity for InsP₆ were previously found in animals [22]. Kidney was selected for this study for InsP₆ and others inositol phos-

* Corresponding author. Tel.: +34-971-173257; fax: +34-971-173426.

E-mail address: dqufgf0@ps.uib.es (F. Grases).

phates importance as crystallization inhibitors [9,10]. It is clear that such inhibitory capacity was related to the ability of the corresponding inositol phosphate to interact with calcium sites on the crystal surface through the phosphate groups, consequently the most effective inhibitory action must correspond to InsP_6 and InsP_5 . For similar reasons, bone was also selected. Thus, crystallization inhibitors are also crystal dissolution inhibitors and due to the affinity of phosphate compound by hydroxiapatite [23], it is important to know the highest phosphorilated inositol status in bone. Finally, due to the higher amounts of InsP_6 found in brain [29], to know the levels of the other upper inositol phosphates in such organ was considered interesting. Moreover, it is also known that InsP_6 and InsP_5 are present in virtually all mammalian cells in higher amounts than any other inositol polyphosphates [3,24] and it is clear that inositol-1,4,5-trisphosphate is a second messenger which regulates intracellular calcium both by mobilizing calcium from internal stores and, probably indirectly, by stimulating calcium entry [25]. $\text{Ins}(1,3,4,5)\text{-P}_4$ was also implied in the regulation of cellular calcium flux [25,26]. Thus, whereas InsP_6 and InsP_5 comprise the bulk of the inositol phosphate content of mammalian cells and it seems that these compounds are metabolically lethargic, the lower inositol phosphates are clearly implied in cell signaling processes and consequently important intracellular changes will occur as a function of the corresponding stimulus. On the other hand our experimental methodology infers the use of a HPLC system to separate the different inositol phosphates. The analysis, after enzymatic hydrolysis, of total myo-inositol present in the collected fractions was performed by derivatization and gas chromatography [27]. Consequently it is not possible to discern the different isomers of each inositol phosphate. For all the mentioned reasons we have evaluated only InsP_6 , InsP_5 and InsP_4 levels in the selected organs and biological fluids.

2. Materials and methods

2.1. Animals and diets

Female Wistar rats (21 days-old) from Harlan Ibérica S.L. (Barcelona, Spain) were acclimated to our animal house of 7 days and kept on diet and tap water ad libitum. Every rat was housed in a cage at a temperature $23 \pm 1^\circ\text{C}$ and relative humidity of 50% with 12-h on-off light cycle. The animals were assigned randomly to two groups of three rats each one.

The diets used were AIN-76A (Harland Tekland, Wisconsin, U.S.A.; composition water 5.8%, proteins 20.3%, carbohydrate 65%, lipids 5%, cellulose 5% and ash 4.7%), a purified diet in which phytate is absent, and AIN-76A modified diet (AIN-76A + 1% InsP_6), to which phytate dodecasodium salt from corn (Sigma-Aldrich, Madrid, Spain) was added to obtain 1g/100g (Harland Tekland,

Wisconsin, U.S.A.). Each rat was fed one of the two different diets for 12 weeks.

On the final day of the experiment 24-h urine was collected by housing the rats in different metabolic cages (Tecniplast Gazzada s.a.r.l., Italy) and the next day the animals were anesthetized with pentobarbital (50 mg/kg, i.p.), sacrificed, and kidneys, brain, bone (femur) and blood were removed.

The procedures used in this experiment were made according the Directive 86/609/EEC regarding the protection of animals used for experimental and other scientific purposes.

2.2. Reagents

All chemicals were of analytical grade. Granular activated carbon (100 mesh) and Na_2EDTA were purchased from Panreac (Spain), phytic acid (from corn), scyllo-inositol, myo-inositol, myo-inositol-(1,3,4,6)-tetraphosphate, myo-inositol-(1,3,4,5,6)-pentaphosphate, pyridine (anhydrous), hexane, methanol, chloroform, isopropanol, sodium hydroxide and trichloroacetic acid were from Sigma (MO, USA).

Derivation chemicals, 1,1,1,3,3-hexamethildisilazane and chlorotrimethylsilane, were purchased from Aldrich (Germany). Crude phytase from *Aspergillus ficuum*, 3.5 units/mg specific activity was from Sigma. A suspension containing 1.0 mg crude/ml was prepared in 3 mM HCl solution with magnetic stirring.

2.3. Sample treatment for InsP_4 , InsP_5 and InsP_6 determination

Treatment for urine. Urine was acidified with HCl to pH 3–4. The sample was purified using a chromatographic column with 0.5 g of activated carbon. 3 ml were lyophilized (Cryodos, Telstar, Barcelona, Spain) and reconstituted by 0.5 ml of water. The method continued as in the procedure described below.

Treatment for plasma. Whole blood in 6 U.I. mL^{-1} heparin was centrifuged at 3,500 rpm for 15 min. 1.5 ml of supernatant were treated with 0.15 ml of 0.1 M Na_2EDTA and 0.3 ml of 1 M trichloroacetic acid. Then the suspension was centrifuged and the supernatant was treated with 1 ml of chloroform:methanol (2:1). The water phase was lyophilized and reconstituted by 0.5 ml of water. This solution was used to determine the InsP_4 , InsP_5 and InsP_6 according the procedure described below.

Treatment for kidney and brain. Tissues once extracted were frozen at -20°C to reduce any metabolic activity. For analysis they were lyophilized and pulverised to a uniform blend. 50 mg of tissue was homogenized in 2 ml of water using a Ultra-Turrax homogenizer (20 s at 13,500 rpm, three times). 0.25 ml of 0.1 M EDTA were added, and the mixture was stirred for 1 h. Afterwards 0.2 ml of 1 M trichloroacetic

acid were added to denaturalise protein. Solid phase was separated by centrifugation at 3,500 rpm for 5 min. The supernatant was treated with 1 ml of chloroform:methanol (2:1). The organic phase was discarded and the water phase was lyophilized. The solid residue was reconstituted with 0.5 ml of water. This solution was taken to carry out the analysis according the procedures described below.

Treatment for bone. 100 mg of sample, pulverised to a uniform blend, was shaken with 0.5 ml of 12 M HCl for 3 h. Then 0.2 ml of the suspension was lyophilized and reconstituted with 0.5 ml of water. The method continued as in the procedure described below.

2.4. InsP_4 , InsP_5 and InsP_6 determination

The determination of InsP_4 , InsP_5 and InsP_6 levels in organs and biological fluids is based in the separation of different inositol phosphate using a HPLC system, and analysis, after enzymatic hydrolysis, of total myo-inositol present in the collected fractions by gas chromatography.

The separation was carried out with a Omnipac Pax-100 anion-exchange column (25 cm × 4 mm i.d.; Dionex) equipped with a Omnipac Pax-100 (8 μm) pre-column and an anion suppressor (ASRS-I 4 mm). The anion suppressor was used to decrease the ionic strength. The separation was performed using an isocratic elution using as a solvent: 122 mM NaOH solution prepared in 4% isopropanol. A 200 μl constant volume injection was used throughout. The flow-rate was 1 ml/min and the anion suppressor was continually regenerated with 50 mM sulfuric acid solution (10 ml/min). The run time of the chromatogram was of 40 min. The eluent recollected during the firsts 18 min was discarded, afterwards fractions of 3 ml was collected to recover the InsP_4 , InsP_5 and InsP_6 .

The collected fractions were frozen at -20°C and lyophilized. The residue was reconstituted by 1 ml of 3 mM HCl. Then, 0.1 ml of the phytase enzyme suspension were added to carry out the hydrolysis of inositol phosphate. The solution was maintained 1 h at 37°C. Scyllo-inositol (in aqueous solution) was added to the vial (internal standard). Then it was frozen and lyophilized. The residue was reconstituted by 1 ml of pyridine and 0.2 ml of hexamethyldisilazane and 0.7 ml of chlorotrimethylsilane were added. After reaction the excess of reagents and organic solvent were blown off in a stream of nitrogen. The solid residue was extracted with 2 ml of hexane. The obtained solution was evaporated and the residue reconstituted in 200 μl of hexane. 1 μl of this solution was injected in a gas chromatograph doted with mass spectrometry (Shimadzu QP-5000 gas chromatograph using fused silica capillary column SPB-20 (Supelco) and He as carrier). The calibration graph for myo-inositol determination was obtained from peak height corresponding to a silylated compounds of scyllo- and myo-inositol.

2.5. Statistics

Values in *figures* are expressed as mean \pm SE. The Student *t*-test was used to assess differences of means. The SPSS for the Windows program was used for statistical computations. A probability of $P < 0.05$ was used for assessing statistical significance.

3. Results

The chromatograms of the standards containing InsP_4 , InsP_5 and InsP_6 are shown in Figure 1. As can be deduced from these results, the InsP_4 is present in the fractions 6–7 (Figure 1A), InsP_5 in fractions 7–9 (Figure 1B) and InsP_6 in the fractions 9–11 (Figure 1C). The chromatograms obtained from organs (brain, kidney and bone) and biological fluids (blood and urine) of the rats treated with AIN-76A and the rats treated with AIN-76A + 1% InsP_6 diet are shown in Figures 2–6. The estimated amounts of each inositol poliphosphate in each case appear in Table 1. As can be seen, in kidney, using a diet containing normal InsP_6 amounts, the InsP_6 levels were double than InsP_5 which were similar to InsP_4 . When rats were fed with a diet without InsP_6 (AIN-76A diet), InsP_6 practically disappeared, InsP_5 levels were reduced to half and InsP_4 practically was not affected. In brain and using AIN-76A + 1% InsP_6 diet, the InsP_6 , InsP_5 and InsP_4 levels were 10-fold superior to those detected in kidney and bone. InsP_6 levels were 5 times superior to InsP_5 which were double than InsP_4 . Using the AIN-76A diet, InsP_6 decreased a 90%, InsP_5 levels were reduced by half and InsP_4 was practically unaffected. Moreover in bone and by using AIN-76A + 1% InsP_6 diet, InsP_6 levels were 30 times superior to InsP_5 , which resulted similar to InsP_4 . By using the AIN-76A diet, whereas InsP_5 and InsP_4 levels were slightly affected, InsP_6 remained undetectable.

In urine and plasma the most abundant inositol poliphosphate was InsP_6 (InsP_6 levels were 10 times superior to InsP_5) and when InsP_6 was eliminated from the diet its levels decreased 50 times in urine and 10 times in plasma.

Thus, in general when the InsP_6 was present in the diet (AIN-76A + 1% InsP_6), InsP_6 levels were notably higher than InsP_4 and InsP_5 levels. Thus in organs, the minimum difference between the InsP_6 and InsP_5 levels was observed in kidney and the maximum difference was observed in bone. The highest InsP_4 , InsP_5 and InsP_6 levels were found in the brain and were 10-fold superior to those detected in the kidney. When the rat was fed with a diet without InsP_6 (AIN-76A diet), whereas the InsP_6 levels decreased dramatically, the InsP_5 levels decreased less (50% as maximum) and the InsP_4 levels only changed slightly. It is interesting to observe how the InsP_4 levels were of the same order for the two groups of rats.

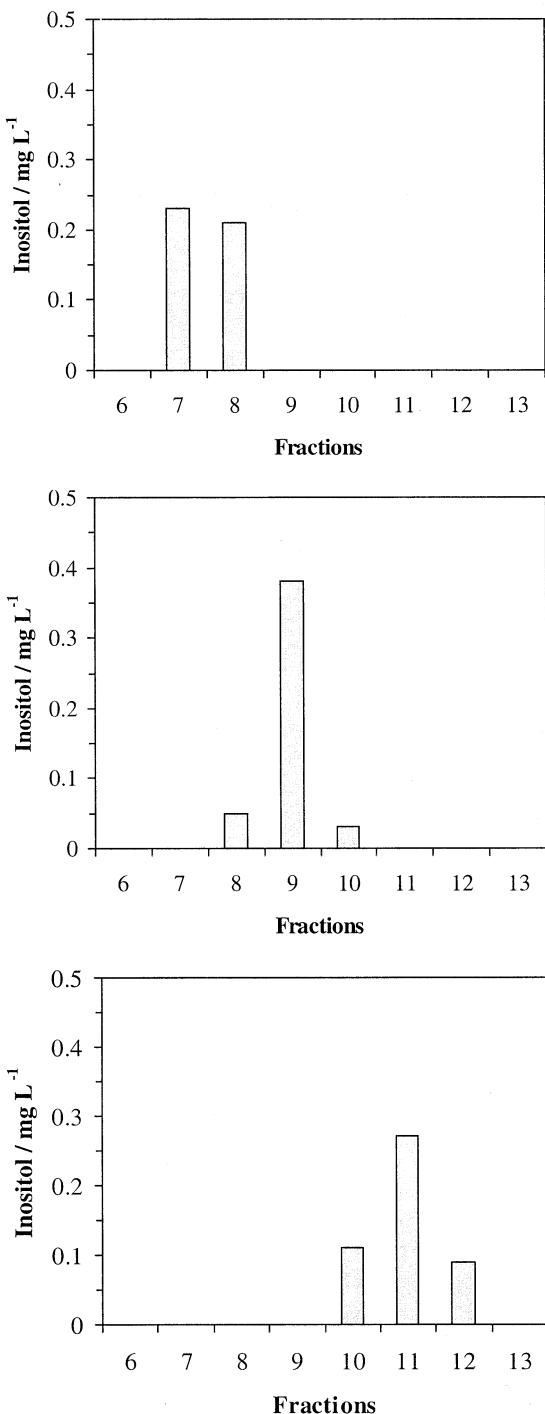


Fig. 1. Chromatograms corresponding to solutions of: a)- 0.5 mg L^{-1} myo-inositol-(1,3,4,6)-tetrakisphosphate; b)- 0.5 mg L^{-1} myo-inositol-(1,3,4,5,6)-pentakisphosphate; c)- 0.5 mg L^{-1} myo-inositol-hexakisphosphate or phytate. Concentrations referred to initial solutions.

4. Discussion

As can be deduced from the results section, InsP_6 levels clearly depended on their dietary intake. This was in accordance to previously reported data [28,29]. After 12 weeks of consuming a purified diet in which InsP_6 was practically

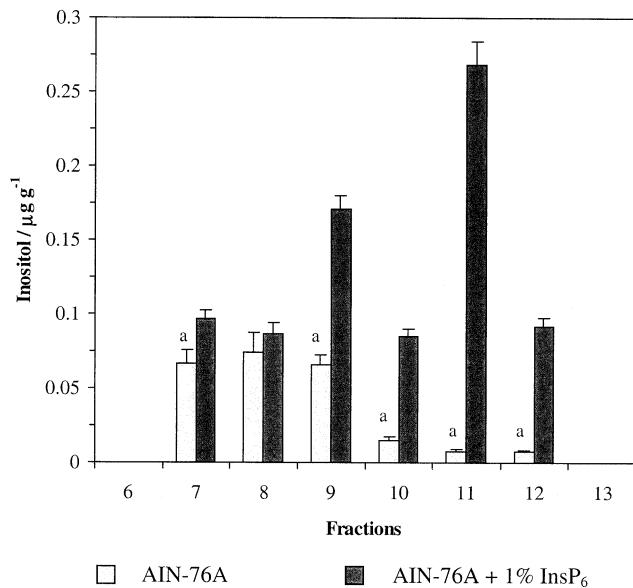


Fig. 2. Chromatogram obtained from kidney samples of animals fed with 1% InsP_6 (AIN-76A + 1% InsP_6) diet and rats fed with a diet without InsP_6 (AIN-76A). The results are expressed as amount of inositol in every fraction referred to dry weight of tissue \pm SEM. $^aP < 0.05$ v.s. AIN-76A + 1% InsP_6 group.

absent, InsP_6 levels decreased to very low values in all the studied organs and biological fluids and appeared inferior to InsP_5 levels. This clearly demonstrated that the endogenous synthesis of InsP_6 is not important and the majority of InsP_6 present in the organism have a dietary origin. On the other hand, InsP_5 levels were also clearly affected by the oral

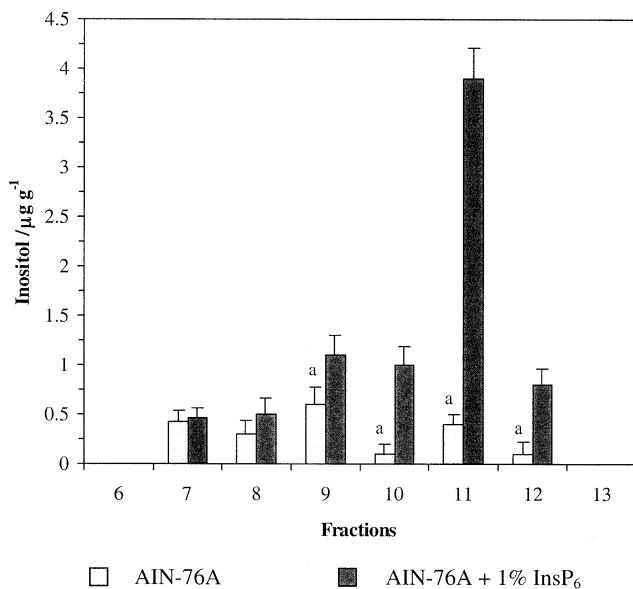


Fig. 3. Chromatogram obtained from brain samples of animals fed with 1% InsP_6 (AIN-76A + 1% InsP_6) diet and rats fed with a diet without InsP_6 (AIN-76A). The results are expressed as amount of inositol in every fraction referred to dry weight of tissue \pm SEM. $^aP < 0.05$ v.s. AIN-76A + 1% InsP_6 group.

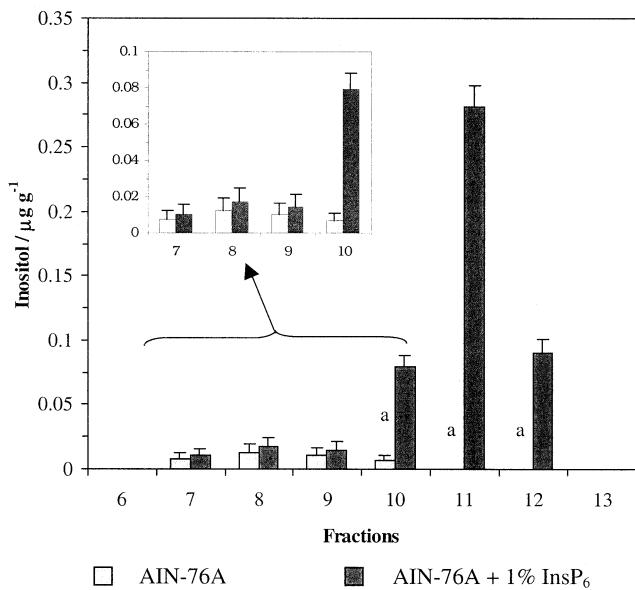


Fig. 4. Chromatogram obtained from bone samples of animals fed with 1% InsP₆ (AIN-76A + 1% InsP₆) diet and rats submitted a diet without InsP₆ (AIN-76A). The results are expressed as amount of inositol in every fractions referred to dry weight of tissue \pm SEM. $^a P < 0.05$ v.s. AIN-76A + 1% InsP₆ group.

intake of phytate. Thus, InsP₅ levels, after removing InsP₆ from the diet, decreased around 50%, reaching levels higher than those seen by InsP₆, however it was similar to InsP₄. Hence, these results indicate that not only is the endogenous synthesis of InsP₅ in rat possible, according to the literature data [4], but the formation of InsP₅ by enzymatic dephos-

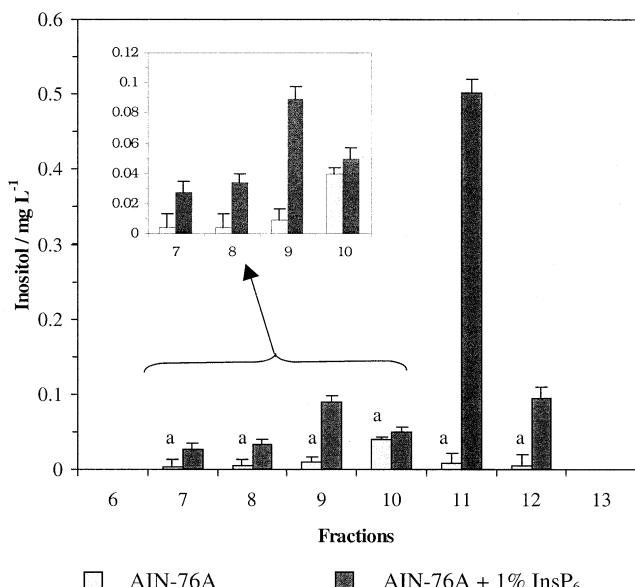


Fig. 5. Chromatogram obtained from urine samples of animals fed with 1% InsP₆ (AIN-76A + 1% InsP₆) diet and rats fed with a diet without InsP₆ (AIN-76A). The results are expressed as concentration of inositol in every fractions expressed as concentration in the sample \pm SEM. $^a P < 0.05$ v.s. AIN-76A + 1% InsP₆ group.

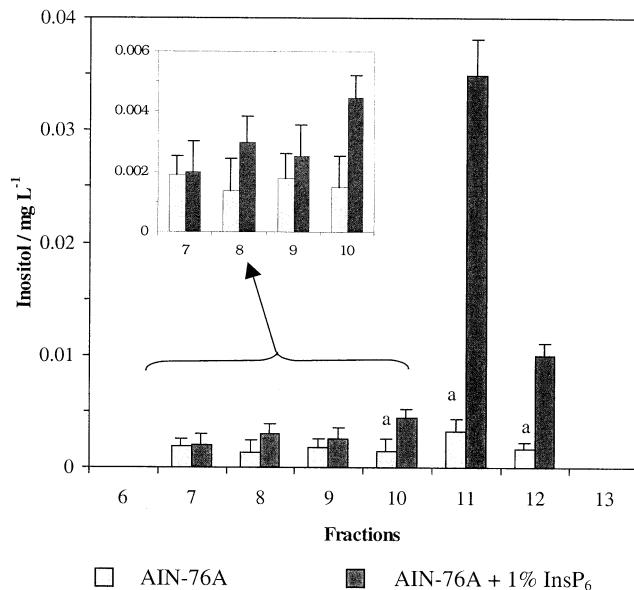


Fig. 6. Chromatogram obtained from plasma samples of animals fed with 1% InsP₆ (AIN-76A + 1% InsP₆) diet and rats fed with a diet without InsP₆ (AIN-76A). The results are expressed as concentration of inositol in every fractions expressed as concentration in the sample \pm SEM. $^a P < 0.05$ v.s. AIN-76A + 1% InsP₆ group.

phorilation of InsP₆ can also take place. We believe that it is a reasonable hypothesis that InsP₆, besides preventing radical formation and pathological calcifications, as discussed in the Introduction, may also present a physiological function as precursor of InsP₅. On the other hand, as is previously explained, InsP₅ is a natural precursor of several InsP₄ and InsP₃, that regulate important physiological processes.

As can be seen, InsP₄ levels were only slightly affected by the presence or absence of InsP₆ in the diet. Hence considering that several InsP₄ have cellular functions as secondary messengers [26,30], the cell must control the InsP₄ levels, likewise partly explaining why InsP₄ levels were similar for both rat groups, and that the adequate InsP₄ levels could be reached by endogenous synthesis.

Moreover, considering, as can be deduced from the results obtained here, that InsP₆ levels found in organs and biological fluids consuming a normal diet were notably higher than InsP₄ and InsP₅ levels, as a result the capacity to prevent pathological calcifications observed *in vivo* when the InsP₆ was administrated orally, [9,11], must be attributed to InsP₆ and not to the other inositol phosphates.

Iron dependent free radicals formation has been related to greater damage in brain ischaemia [31] and the ability of InsP₆ to inhibit iron-catalyzed hydroxyl radical formation has been previously pointed out [6]. For these reasons, one of the possible roles of the higher InsP₆ levels found in brain could be a protective function as antioxidant due to its capacity to act as iron chelator, avoiding the lipidic membranes peroxidation. Obviously this is a hypothesis that needs further study and clarification.

Table 1

Estimated amounts of InsP₄, InsP₅ and InsP₆ in brain, kidney, bone (femur), urine and plasma of rats fed the AIN-76A diet and AIN-76A + 1% InsP₆ diet for 12 weeks

Group	AIN-76A diet			AIN-76A + 1% InsP ₆ diet		
	InsP ₄	InsP ₅	InsP ₆	InsP ₄	InsP ₅	InsP ₆
Brain (μg/g)	2.28 ± 0.30	2.34 ± 0.55 ^a	2.55 ± 0.37 ^a	2.44 ± 0.28	4.29 ± 0.64	24.89 ± 1.14
Kidney (μg/g)	0.35 ± 0.03 ^a	0.26 ± 0.02 ^a	0.048 ± 0.005 ^a	0.51 ± 0.02	0.67 ± 0.03	1.71 ± 0.06
Bone (μg/g)	0.041 ± 0.013	0.041 ± 0.020	ND ^a	0.056 ± 0.01	0.057 ± 0.02	1.79 ± 0.06
Urine (mg/L)	0.02 ± 0.03 ^a	0.04 ± 0.02 ^a	0.06 ± 0.04 ^a	0.15 ± 0.02	0.35 ± 0.03	3.20 ± 0.06
Plasma (mg/L)	0.010 ± 0.002	0.007 ± 0.003	0.021 ± 0.004 ^a	0.011 ± 0.003	0.010 ± 0.003	0.22 ± 0.01

The evaluation of the amounts of InsP₄, InsP₅ and InsP₆ have been carried out considering that the fraction 7 represents a 52.3% of the total amount of InsP₄ present in the sample, that the fraction 9 represents a 82.6% of the total amount of sample's InsP₅ and that the fraction 11 represents a 57.5% of the total amount of sample's InsP₆. Percentage of recovery (96.9% InsP₄, 98.7% InsP₅ and 99.1% InsP₆).

Values represent mean ± SEM for three rats per group.

^aP < 0.05 v.s. AIN-76A + 1% InsP₆ group.

ND- non detectable.

Finally, the total depletion of InsP₆ in bone when animals were fed on AIN-76A diet, could be explained speculating that InsP₆ in bone is mainly linked to hydroxyapatite and the contribution of cellular InsP₆ to the total InsP₆ pool would be small. For this reason InsP₆ could be easily removed as a consequence of bone renewal and InsP₆ desabsorption from hydroxyapatite surface.

Acknowledgments

This work was supported by project PM97-0040 of the Spanish DGESIC. One of the authors; B.M.S., expresses his appreciation to the Spanish Ministry of Education and Culture for a fellowship of the FPU program.

References

- [1] B.F. Harland, D. Oberleas, Phytate in foods, *World Rev Nutr Diet* 52 (1987) 235–259.
- [2] V. Raboy, Inositol metabolism in plants (D.J. Morre, W.F. Boss, A.L. Loewus, eds.), Wiley-Liss, New York, 1990, pp. 55–76.
- [3] C.M. Bunce, P.J. French, P. Allen, J.C. Mountford, B. Moor, M.F. Greaves, R.H. Michell, G. Brown, Comparison of the levels of inositol metabolites in transformed haemopoietic cells and their normal counterparts, *Biochem J.* 289, (1993) 667–673.
- [4] L.R. Stephens, P.T. Hawkins, A.F. Stanley, T. Moore, D.R. Poyner, P.J. Morris, M.R. Hanley, R.R. Kay, R.F. Irvine, Myo-inositol pentakisphosphates. Structure, biological occurrence and phosphorylation to myo-inositol hexakisphosphate, *Biochem J.* 275, (1991) 485–499.
- [5] F. Grases, J.G. March, R.M. Prieto, B.M. Simonet, A. Costa-Bauza, A. García-Raja, A. Conte, Urinary phytate in calcium oxalate stone-formers and healthy people. Dietary effects on phytate excretion, *Scand J Urol Nephrol.* 85, (2000) 138–142.
- [6] P.T. Hawkins, D.R. Poyner, T.R. Jackson, A.J. Letcher, D.A. Lander, R.F. Irvine, Inhibition of iron-catalysed hydroxyl radical formation by inositol poliphosphates: a possible physiological function for myo-inositol hexakisphosphate, *Biochem J.* 294, (1993) 929–934.
- [7] A.M. Shamsuddin, Inositol phosphates have novel anticancer function, *J Nutr.* 125, (1995) 725S–732S.
- [8] A.M. Shamsuddin, I. Vucenik, K.E. Cole, IP₆: a novel anti-cancer agent, *Life Sci.* 61, (1997) 343–354.
- [9] A. Conte, A. Piza, A. García-Raja, F. Grases, A. Costa-Bauzá, R.M. Prieto, Test of urinary lithogen risk: usefulness in the evaluation of renal lithiasis treatment using crystallization inhibitors (citrate and phytate), *Arch Esp Urol.* 52, (1999) 94–99.
- [10] F. Grases, R. García-González, J.J. Torres, A. Llobera, The effects of phytic acid on renal stone formation in rats, *Scand J Urol Nephrol.* 32, (1998) 262–265.
- [11] F. Grases, R.M. Prieto, B.M. Simonet, J.G. March, Phytate prevents tissue calcifications in female rats, *BioFactors*, 11, (2000) 171–177.
- [12] L.R. Stephens, R.F. Irvine, Stepwise phosphorylation of myo-inositol leading to myo-inositol hexakisphosphate in, *Dictyostelium*, *Nature*, 346, (1990) 580–583.
- [13] P.P. Ongusaha, P.J. Hughes, J. Davey, R.H. Michell, Inositol hexakisphosphate in *Schizosaccharomyces pombe*: synthesis from Ins-(1,4,5)-P₃ and osmotic regulation, *Biochem J.* 335, (1998) 671–679.
- [14] C.A. Bearly, D.E. Hanke, Metabolic evidence for the order of addition of individual phosphates esters in the myo-inositol moiety of inositol hexakisphosphate in the duckweed *Spirodela polyrhiza*, *Biochem J.* 314, (1996) 227–233.
- [15] A. Nahapetian, V.R. Young, Metabolism of ¹⁴C-phytate in rats: effect of low and high dietary calcium intakes, *J Nutr.* 110, (1980) 1458–1472.
- [16] K. Sakamoto, I. Vucenik, A.M. Shamsuddin, [3H]phytic acid (inositol hexaphosphate) is absorbed and distributed to various tissues in rats, *J Nutr.* 123, (1993) 713–720.
- [17] I. Vucenik, A.M. Shamsuddin, [3H]inositol hexaphosphate (phytic acid) is rapidly absorbed and metabolized by murine and human malignant cells in vitro, *J Nutr.* 124, (1994) 861–868.
- [18] N. Sasakawa, M. Sharif, M.R. Hanley, Metabolism and biological activities of inositol pentakisphosphate and inositol hexakisphosphate, *Biochem Pharmacol.* 50, (1995) 137–146.
- [19] C.P. Downes, P.T. Hawkins, R.F. Irvine, Inositol 1,3,4,5-tetrakisphosphate and not phosphatidylinositol 3,4-bisphosphate is the probable precursor of inositol 1,3,4-trisphosphate in agonist-stimulated parotid gland, *Biochem J.* 238, (1986) 501–506.
- [20] S.B. Shears, The pathway of myo-inositol 1,3,4-trisphosphate phosphorylation in liver. Identification of myo-inositol 1,3,4-trisphosphate 6-kinase, myo-inositol 1,3,4-trisphosphate 5-kinase, and myo-inositol 1,3,4,6-tetrakisphosphate 5-kinase, *J Biol Chem.* 264, (1989) 19879–19886.
- [21] X. Yang, S. B. Shears, Multitasking in Signal Transduction by a Promiscuous Human Ins(3,4,5,6)P₄ 1-Kinase/Ins(1,3,4)P₃ 5/6-Kinase, *Biochem J.* 351, (2000) 551–555.
- [22] K. Nogimori, P.J. Hughes, M.C. Glennum, M.E. Hodgson, J.W. Putney, Shears, S.B. Purification of an inositol (1,3,4,5)-tetrakisphos-

phate 3-phosphatase activity from rat liver and the evaluation of its substrate specificity, *J Biol Chem.* 266, (1991) 16499–16506.

[23] F. Grases, M. Ramis, A. Costa-Bauzá, Effects of phytate and pyrophosphate on brushite and hydroxiapatite crystallization. Comparison with the action of other poliphosphates, *Urol Res.* 28, (2000) 136–140.

[24] F.S. Menniti, K.G. Oliver, J.W. Putney, S.B. Shears, Inositol phosphates and cell signaling: new views of InsP_5 and InsP_6 , *TIBS* 18, (1993) 53–56.

[25] M.J. Berridge, R.F. Irvine, Inositol phosphates and cell signalling, *Nature* 341, (1989) 197–205.

[26] R.F. Irvine, Advances in Second Messenger and Phosphoprotein Research (J.W. Putney, ed.), Raven Press, New York, 1992, pp. 161–185.

[27] J.G. March, R. Forteza, F. Grases, Determination of inositol isomers and arabitol in human urine by Gas Chromatography-Mass Spectrometry, *Chromatographia*, 42, (1996) 329–331.

[28] F. Grases, B.M. Simonet, J.G. March, R.M. Prieto, Inositol hexakisphosphate in urine: the relationship between oral intake and urinary excretion, *BJU International*, 85, (2000) 138–142.

[29] F. Grases, B.M. Simonet, R.M. Prieto, J.G. March, Phytate (InsP_6) levels in diverse rat tissues. Influence of dietary phytate, *Br J Nutr.* 86, (2001) 00–00.

[30] W. Xie, M.A. Kaetzel, K.S. Bruzik, J.R. Dedman, S.B. Shears, D.J. Nelson, Inositol 3,4,5,6-tetrakisphosphate inhibits the calmodulin-dependent protein kinase II-activated chloride conductance in T84 colonic epithelial cells, *J Biol Chem.* 271, (1996) 14092–14097.

[31] J.W. Schmidley, Free radicals in central nervous system ischemia, *Stroke* 21, (1990) 1086–1090.